
N'33
Itme 7997

A
NEvtlSLETTER

P T M
G SOCIETYMATI{EMATICAL PROGRAMMIN

sso s \

N

\

I

Report
of the

Cofitmittee

Algorithms
and the

MATHEMATICAT PROGRAMMING SOCIETY

Geoqge B. Dantzig

Donald Goldfarb

Eugene lawler

ClydeMonma

Stephen M. Robinson
tarl,nl

PAGE 2 speciel edition IUNE 1991

Background and chaqge Assumptions

HE Committee was
appointed in the

MPS is a professional, scientific society
whose membens mgage in research and
teaching of the theory implementation and
practical use of opimization methods.

It is within the purview of MPS to promote
its activities (via publications, s5rmposia,
pt'rzes, newsletter), to set standards by
which that research can be measured (such

as criteria for publication and prizes,
guidelines for computational testing etc.),
and to take positions on issues which
directly affect our profession.

It is not within the purview of MPS to
market software prcducts, and MPS should
not become involved in issues related to the
commercial aspects of our profussion excep
where it directly affects research and
education.

The Committee is unable to make expert
legal analyses or to provide legal counsel.
The main body of this report is therefore
written from the perspective of practitioners
of mathematical programming rather than
from that of attorneys skilled in the law.

MPS is an international society. However,
the Committee has interpreted its charge as
applyurg specificallyto U.S. patent law and
its application to algorithms. All comments
and conclusions ofthis report should be
read with this fact in mind.

spring of 1990
by George Nemhauser, Chair-
man of the Mathematical Pro-
gramming Society (MPS).

Its charge follows:
'The purpose of the committee
should be to devise a position
for MPS to adopt and publicize
regarding the effects of patents
on the advancement of research
and education in our field. The
committee may also wish to
conrment on the recent
past history."

This is the report of the Commit-
tee.It comprises a main body
with our assumptions, findings
of fac., conclusions, and recom-
mendations. There are two
appendices, prepared by others,
containing a great deal of spe-
cffic factual information and

Facts about patents and
coPyrights

some additional analysis.
The three principal forms of legal protection
for intellectual property are the copyright,
the patent, and the trade secret. C-opyrights
and patents are governed by federal law,
trade secrets by state law. Setting aside tlte
issue of trade secrets, some of the distinc-
tions between copyrights and patents can be
summarized as follows. _
Type of ptoperty probcteil:Pabnts Protect
ideas, principally "nonobvious" inventions
and designs. It is well estabished that
"processes" are patentable. The Patent
Office currently grants patents on algo-

PAGEs special edition Jr.rNE1991

rithms and software, on the basis of the
ambiguous 1981 U.S. Supreme Court
decision in Distuttd o. Dielv.

Copyrights do not protect ideas. Instead,
they prctect the expression of ideas, in
"original works of authorship in any
tangible medium of exprression." The
principle that software is copyrightable
appears to have been well established by the
19&! decision of the U.S. C,ourt of Appeals in
AVpbo.Frmklin.

Hout ptoEction is obtained; Federal law is
now in essential conformity with the Bern
Copyright Convention. As a consequence,
international copyrights are q€ated virtu-
ally automatically for most works of
authorship. Government registration of
copyrights is simple and inexpensive to
obtain.

By contrast, patents are issued by the U.S.
Patent Office only after an examination
procedure that is both lengthy (three years
or more) and costly ($10,000 and up in ftes
and legal expenses). An inventor must avoid
public dirlosure of his invention, at least
until patent application is made, else the
invention will be deemed to be in the public
domain. Patent application proceedings are
confidential, so that trade secret protection
can be obtained if a patent is not granted.

Izngth of protection U.S. patents are for 17
years. Copyrights are for the lifetime of the
individual plus 50 years or, in the case of
corporations, 75-1 00 years.

Facts about algorithms

Algorithms are typically designed and
developed in a highly decentralized manner
by single individuals or small groups
working together. This requires no special
equipment, few resources, and little cost.
The number of people involved is also quite
laqge compared to the needs of the market-
place. Independent rediscov.ery is a com-
monly occurring phenomenon.

There is a long and distinguished history of
public disclosure by dwelopers of math-
ematical algorithms via the usual and
widely.accepted channels of publication in
rientific iturnals and talks at professional

meetings. These disclosures include the
theoretical underpinnings of the method,
implementation details, computational
results, and case studies of results on
applied problems. Indeed, algorithm
dwelopment is based on the tradition of
building upon previous work by generaliz-
ing and improving solution principles from
one situation to another.

The commercial end product of an algo-
rithm (if there is any) is generally a software
package where the algorithm is again
generally implemented by a very small
number of individuals. Of course, a larger
group of people may be involved in
building the package around the optimiza-
tion software to handle the user interfacg
data processing, etc. Also, others may be
involved to handle functions like marketing,
distribution, and maintenance.

l-r
I

\-,ompetition in the marketplace has
been traditionally based on the performance
of particular implementations and fearures
provided by particular software products.
The product is often treated like a ,,black

box" with the specific algorithm used
playing a rather minor role.

The cost of producing, manufacturing
distributing and advertising optimization
software is often quite small. Even when
this is not the case, it is generally the
implementation of algorithms that is costly,
rather than their development. Software
manufacturers have a need to protect their
investment in implementation, but have
little need to protect an investment in
algorithmic development. In the absence of
patents, algorithms-like all of mathematics
and basic science- are freely available for
all to use.

Traditionally, developers of optimization
software have protected their investments
by keeping the details of their implementa-
tion secret while allowing the general
principles to become public. Software
copyrights are also an appropriate form of
protection, and are now widely used.
Moreover, despite unresolved legal ques-
tions qcncerning the "look and feel,, of
software, the legal issues of copyright
protection seem to be relatively well settled.

Often an opimization package is a small
(but important) part of an overall planning
process. That process is often guite complex;
it may require many nwources and great
cost to complete, and the potential benefits
maybe uncertain and distributed over a
long time period. In such situations it is
usually quite difficult to quantify the net
financial impact made by theembedded
opimiiation package.

Public policy issues

Will elgorithrr p etrllrlts ptomob inoention?
Article I, Section 8 of the U.S. C-onstitution
empowers Congrcss'To promote the
Progress of Science and useful Arts, by
securing for limited Times to Authors and
Inventors the exclusive Right to their
respective Writings and Dscoveries.,,
Inasmuch as patents are intended to provide
an incentive for inventiory it seems appro-
priate to inquire whether patenting of
algorithms will, in fact, create an incentive
for the invention of algorithms.

Given the existing intensity of research and
the rapid pace of algorithmic inventiory it
seems hard to argue that additional incen-
tives are needed. In fact, there is good
reason to believe that algorithm patents will
inhibit research, in that free exchange of
ideas will be curtailed, new developments
will be held secret, and researchen will be
subjected to undesired legal constraints.
Will algorithrn patents plotiitc rceded
p rotection f or softu arc m enufccturets?
Copyright and trade secret protection
appear to provide the sort of protection
most needed by software manufacturers. By
their nature, patents seem to offer a greater
potential for legal confrontation than
copyrights. Instead of providing protection,
algorithm patents actually pose a threat to
smaller softwarc houses lacking the re
sources to defend themselves in costly
patent litigation. It can be argued that
patents encourage an oligarchical industrial
structure and discourage competition.

Is the Patent Office ablc to fualuith
elgorithm patezts? There is abundant
evidence that the Patent Office is not up to
the job. Many algorithmic tnventions,, have

PAGE4 special edifion IUNE 1991

been granted undesenred patents, greatly
increasing the potential for legal entangle.
ment and litigation. Moreover, it seems
unlikely that there will be any substantial
imprcvement in the quality of patent
examinations.

Condusioru

It seems clear from the previous discussion
that the nature of work on algorithms is
quite different from that in other fields
where the principles of patents apply more
readily. This in itself is a strong argument
against patenting algorithms.

In additiory webelieve that the patenting of
algorithms would have an extremely
damaging effuct on our research and on our
teaching, particularly at the graduate lwel,
far outweighing any imaginable commercial
benefit. Herc is a partial list of rcasons for
this view:

. Patents provide a protection which is not
warranted given the nature of our work.

. Patents arc filed secrctly and would likely
slow down the flow of information and the
dwelopment of results in the field.

. Patents necessarily impose a long-term
monopoly over inventions. This would
likely restrict rather than enhance the
availability of algorithms and software for
optimization.

r Patents introduce tremendous uncertainty
and add a large cost and risk factor to ow
work This is unwarranted since our work
does not generate large amounts of capital.

. Patents would not provide any additional
sourc€ of public information about algo-
rithms.

. Patents would largely be cpncentrated
within large institutions as universities and
industrial labs would likely become the
ownefti of pa.tents on algorithms produced
by their researchers.

. Once granted, wen a patent with obvi-
ously invalid daims would be difficult to
overturn by p€rsons in our profession due
to high legal costs.

e If patents on algorithms were to become
commonplace, it is likely that nearly all
algorithms, new or old, would be patented
to provide a defense against future lawsuits
and as a potential revenue stream for future
royalties. Such a situation would have a
very negative effect on our profession.

Recommendations

The practice of patenting algorithms is
harmful to the progress of research and
teaching in optimization, and therefore
harmful to the vital interests of MI'S. MI5
should therefore take such actions as it can
to help stop this practicg or to limit it if it
cannot be stopped.

In particular:

r The M[€ Council should adopt a resolu-
tion opposing the patenting of algorithms
on the grounds that it harms research and
teaching.

. M[5 should urge its sister societies (e.9.,

SIAM, ACM, IEEE Computer Society, AMS)
to take a similar forthright position against
algorithm patents.

o M[5 should publish information in one or
more of its publications as to why patenting
of algorithms is undesirable.

r The Chairman of M[5 should write in his
official capacity to urge members of
Congress to pass a law declaring algorithms
non-patentable (and, if possible, nullifying
the effects of patents already granted on
algorithms).

o MIIS should support the efforts of other
organizations to intervene in opposition to
the patenting of algorithms (for example, as
friends of the court or with Congress). It
should do so by means such as providing
factual information on mathematical
programming issues and/or history, and
commenting on the impact of the patent
issue to our research and teaching in
mathematical programming. Mf'S should
urge its members to do likewise.

26 September 1990

PAGE5 special eilition

Appendix A
The case agairr,st New round in an old debate
"soffware patentd'

by Brian Kahin
Brbn lfuhin is an ettorncy enil ansultent sVccializ-
ing in inhllectual prcpcrt!, inlormation tcdnnlogy,
end plicy rlculopnart. Hc is canaily m ailjunct
rcxerdt felloat erul ilftector of the Infurmatilm
Infrastructure Proiect in tlu Program on Scimcc,
Tednology arul Public Policy at Hamail's lohn F.
IGnnedy S&ml of C-numment.Ile recently pryred
rcports on isstus surrouniling thz dcoclopunt of tlu
Natiotul Re*arch anil Eilucation Nettmrk for the
U,S, Congress Offte of Technology Asxssment.

Mr. Kahin uas a pincipal in the puruling of thc
Inkractioe Vidn Industry Asscbtion anil lus woeil
as genaal munxl for tlu Asnciation since its
inception in 7987. He is also counxl for the
InErnatbrul InEractioe Communicatbns Socicty, rhc
ncicty for profusbnals in interactioe meilia, and lns
recettly been appointeil aun*l to the Feiletation of
Amn ican Re*ar d N etunrks.

Mr. IQhin uas instrummlal in thc anccption anit
deoelopmeil of theEDUCOM Softvnrelnitiatioe -

which has inooloeil hunilreik of uniursitics and
publkhers ia adilressing issues in tlu creation,
ilistribution, Iicensing, management, enil ammercial-
ization of software in higher eilucation - anil is thz
original author $ tlu widcly published "EDUCOM

Coile" on inkllectual goprty rights. He is cunently
directing the EDUCOM project on *ftware patents.

During the past three yearc, Mr. Kahin has chaireit
subcommittees on u*r rights anil ilcrioatioe unrk
within tlu Databays C-ommittee (PTC-702) of the
Ameilcan kr Asscbtion. He uns formerly effiliated
uith thc Fevar& Program onC-ommunicetbns
Pdicy et MlT,wherehe soeil inurious capacities

for the Rzsrarch Program, ,hc MIT C-otrmunicatbns
Forum, enil Proiect Atheru. Mr. IQhin receioeil his
B.A. from Harcaril &Ilege in7969 erul his l.D. ftom
Harcaril Lew *hml in 797 6.

Mr. IQhin's Elephore number b (f.77) 864-6606 arul
hb ebctronic nail aililress b
lcehin@hul awT.harceril dlu.

ortly after Diamond v. Dehr [11
was decided by the Supreme Courtin
1981, the twenty-year-old debate over
the patentability of computer prcgranur
subsided. In that case, a Fa rnairrity of
the Court, by a€epting the patentability
of a process for curing rubber in which a
computer program was the mai)r
component, had found their way
arcund earlier misgvings about the
patentability of mathematical algo-
rithms. [2]
The Patent Office, which had long resisted
granting software patents and struggled
regularly with the Court of Customs and
Patent Appeals (CCPA) over the patentabil-
ity of program-related inventions, subse-
quently underwent a change of heart. After
pending appeals to the CCPA were decided
in 1982, not a single case croncerning a
rejected application for program-related
patent was heard by either the CCPA or its
successor, the Court of Appeals fior the
Federal Circuit (CAFC), for the following
seven years. As the debate subsided, the
number of software patents granted by the
Patent Office began to grow (Table l). By
early 1989, the trickle had become a ton€nt.

I
F .

PAGE6 s?eciel edition JUNE 1991

Table 7. "Softutare Patentso Granteilby
USPTO:7987-798!,

1981

t982

1983

1984

1985

1985

1987

1988 183

1989 (s79)
(extrapolation fiom
1st four months of 1989: = 3 X 197)

Source: Ebclrortc Data Systems, "Sottutare

Pehnt Indcxcs - lanuary 7970 thru ApiI
7989,' prcVered for the Computer Laut
Committee of thc State Bat of Texas. [3]

As these new software patents have drawn
attention, the debate has flared up. It now
takes place in an environment transformed
by the microcomputer, in which a fast-
growing mass-market publishing industry
has emerged. Software has found its way
into almost every office and into tens of
millions of homes, performing common-
place and extraordinary functions through a
seemingly infinite repertoire of prccesses.

In this new round of debate, the hardware
and software industries have switched
side. In 198, when Parker v. Flook was
before the Supterne Court, ADAPSO
(representing software interests) filed an
amicus brief favoring patentabilitn while
CBEMA (representing hardware interests)
filed a brief opposing patentability. Since the
early days of computers, the hardware
industry (including IBM) had opposd
patentability of software in the belief that
softwarc patmts would inhibit software
development and so limit the market for
hardwarc. Soft ware developers, while
endorsing patentability in theory, seemed
uninterested in pursuing patents in practice.
t4l

the meantime, hardware manufactur-
ers, recognizing the growing economic
importance of softwarg have come to see
software as an extension of their hardware
business - rather than merely as a comple.
mentary product produced by third parties.
Major hardware firms, accustomed to
patent-oriented strategies and armed with
in-house patent counsel, have filed for and
received hundreds of software patents. By
one count, IBM leads with 264 over a nine-
year period, followed by Hitachi with 69. [5]

The new software publishing industry,
which developed without using patent
protection, has suddenly found itself
vulnerable to charges of patent infringe-
ment. Humble origins, rapid growth, strong
market orientation, international acceptance
of copyright, and the costs and uncertainty
of patenting -all led publishers to rely on
copyright. [6] Even today, only a handful of
patents have been issued to established
software publishers. But having seen
evidence of widespread patenting of
software processes, softwarc publishers are
fearful that patents will increase develop
meni costs, inhibit creativity and innovatiory
and embroil the industry in litigation. [7]

Y Y trite ttre Software Publishers
Association has not taken a formal position
on the issue, Executive Drector Ken Wasch
has spoken stnrngly against software
patents. [8] At this point, few software
developers understand the full impact of the
patent system on traditional practices, and
much of their frustration and anger is
vented at the seeming ineptitude of the
Patent Office. Indeed, both sides of the
debate share in widespread concern that the
Patent and Trademark Office lacks the
expertise and r€sources to process software
patents properly.

While the earlier debates focussed on the
patentability of mathematical algorithms -

i.c., code-level processes, much of the
current debate concerns the user interface.
For example, computer-implemented
analogp of conventional practice such as
footnoting [9] and redlining [10] are
receiving patents which in many cases

appear broad enough to block most if not all
computer implementations of these prac-
tices. The late appearance of pa.tents at this
level is a consequence of the user-oriented
design and functionality of microcomputer
software.

Meanwhile, the academic literature on
software patents has waned. [11] There is
none that takes into account the scope and
breadth of the patents that have been issued
since Damond v. Diehr. In the last three
years, considerable practitioneroriented
literature has appeared (especially in The
Computer Lawyer, [12]) and called attention
to the wide range of software processes now
suscepible to patenting. Largely unmindful
of policy issues, this literature pr€sents
patent as a powerful tool for protecting
investments in software development. It is
oblivious to the criticisms and sense of crisis
that has arisen within the software publish-
ing industry since last year - for which one
must look to the trade and general press.
1131

The patent bar stoutly denies that there is
such a crisis and argues that the apparent
problems are merely typical of patenting in
any new technology until the Patent Office
acquires sufficient expertise in the subject
matter. [14] Of course, the patent bar has a
vested interest in expanding the scope of
patentable subject matter. Patent practice is
the only speciality within the law requiring
special certification and training (including
a degree in a science or engineering disci-
pline), and patent practitioners constitute a
close-knit community which gravitates
around a federal agency in Crystal City,
Virginia.

rr1
T

I he inauguration of the Court of Appeals
for the Federal Circuit (CAFC) in 1983 has
enhanced the special status and insularity of
patent practice. In the interest of promoting
uniformity in the law, the CAFC is assigned
jurisdiction over all appeals from patent
decisions in the Dstrict Courts, as well as
appeals from Patent Office decisions (which
were formerly heard by the CCPA). With
panels in patent cases led by members of the
patent bar, the CAFC has established a
strong pro-patent record and has greatly

2t
s2
u

tx
1s3
t87

u27

PAGET sVeciel edition IUNE1991

strengthened the presumption of patent
validity. [15] Evm a sympathetic observer
has noted the'errangelical fervor/' with
which the CAFC has pursued its course of
action. [15] The CAFC, and the Reagan
Administration's general support for
patents, created an encouraging atmosphere
for the Patent Office's foray into software.

Capability of the Patent
Office

In theory given enough resources, it should
be possible for the PTO to process software
patents expeditiously within the present
framework of the patent system. However,
the 1956 Report of the President's Commis-
sion on the Patent System observed:

Tlu Patai Offiu now cannot examitu applica-
tions for Vryrams becau* of tlu lack of a
classificatbn telmiryc antl thc requisite wrch

filcs, Eoen if th6e utere awilabb, reliable
wrclvs unuld not be feasihle w economic
buu* of tlu ttanendous oolutttc ol pior an
being gercratd. Wittai thb vardt,tlu
palnting of yogrms would be tantamount to
mne rcgistrati* oyil thepresumption of
oalillity unuWbe allbut norcxbtcnt.

rr1
I

Io most of the software industry these
observations hold true today. Despite the
PTC/s embrace of software patents after
Diamond v. Diehr in the early 1980s, it has
made no apparent effort to address these
problems in any systematic manner. The
classification scheme remains undeveloped,
[18] and the problem of locating prior art
has only been exacerbated by the long delay.
Ircnically, the PTO now maintains that there
is no problem, [19] and the presumpion of
patent validity has been greatly strengh-
ened by decisions of the CAFC.

It is difficult for the PTO, like other govern-
ment agencie, to find resources to meet
new challenges, and the 1966 Pnesident's
Commission in pat echoed the PTC/s own
anxiety about launching into an uncharted,
seemingly fathomless area. In theory, if only
sufficient funding were available, the Patent
Officecould hire the right people, build a

comprehensive library to reference prior art,
develop a sophisticated classification
system, and invest in the best automation.
But while the funding of the Patent Office
has more than doubled in the past swm
years and average proc€ssing time has been
reduced to 1&19 months, avente process-
ing time for software patents remains
substantially higher - around 30 months.
[20] Indeed, since it has recently been taking
the Patent Office around two months after
the grant to actually publish patents, the
effective processing period is, in certain
respects,32 months. [21] Despite the longer
processing period, there is widespread
concern about the quality of the review
process because so many of the patents
issued look obvious to industry observers.
Indeed, the lack of reportd appeals from
Patent Office decisions since 1982 suggests
that most applications for software patents
are eventually $antd.
One freguently cited problem is that the
Patent Office does not accept a computer
science degree as a qualifying degree for
attomey registration. Even if it did, there is a
question of how well the Patent Office can
attract and hold expertise in an area where
industry demand is high. Difficulty in
attracting qualified personnel naturally
cr€ates problems in applying the
nonobviousness standard, since less
qualified examiners will tend toward a
lower standard in determining the hypo-
thetical "person having ordinary skill in the
art." Lcss qualified personnel are also more
likely to be influenced by sophisticated
patent attorneys in the ex parte review
pnocess, and the point system for promotion
of personnel rewards dispositions, which
encourages the granting of patents in close
cases.

The problem of locating prior art noted by
the President's Commission is first of all due
to the lack ofa base in the patent records
themselves. In a mature technology, the
patent records with their classification
system and cross-referencing provide the
most useful base of prior art. However, since
history passed the Patent Office by thirty
years ago, only an infinitesimal portion of
the art of computer programming is to be
found in the patent database. In most fields,

the prior art in the patent base is supple-
mented by published technical literahrre,
but in computer programming the literature
is rant and unorganized. There was long a
dearth of scholarly literature in the field,
and there is still no bibliographic database.

I \ or does the Patent Office maintain a
library or archive of software that might
provide a record of the prior art. Howener,
software alone does not qualify as a
"printed publication" establishing prior art,
and furth€r er/idence would be required to
show that the software was used publicly.
Locating and documenting sudr evidence is
often expensive and is uzually undertaken
only in the course of patent litigation.

In addition, many programs used commer-
cially are licmsed subFct to trade secret
restrictions against r€verse engineering.
When a software process is hidden and
contractual restrictions effectively preclude
its disclosure, it may be considered sup-
pressed and therefore not qualify as prior
art. [22] On the other hand, it may qualify as
prior art if the license is not efftctive in
precluding reverse engineerint - as may
well be the case with common shrink-wrap
licenses. [23]

Nature of the software
indushry

Since the patent system operates under the
principle of winner-take-all, only the very
first to invent gets the patent. The efforts of
the losers are wasted in that they must
design around the patent (ifthat is possible)
or pay the winner for the privilege of using
the patent.

If one knew who had invented what when it
happened, this would not be so bad.
However, patent applications remain secret
unless and until the patent issues. This
secrecy permits the applicant to maintain
trade secret protection if the patent applica-
tion is not grantd. Howwer, with no way
of knowing what pa.tents are in the trpeline
a software developer can nener be assurd
of avoiding patent infringements. While this

,i

PAGES

problem is end€rric to the patent system,
factors combine to make it exceptionally
severe in the case of software.

Product development cycles in the software
busines are typically much less than the
current 32-month average time between
application and the publication of patent
grant. Indeed, the product life cycle may
well be less than 32 months. Even 20
months, the current average for all patents is
a very long time in the software business.
1241
At the same time, the potential for waste is
uniquely severe in the software industry
because of the sheer number of players. The
highly decentralized nature ofthe industry
makes it likely that many different individu-
als or firms will come up with similar new
prccesses at about the same time. Structur-
ally, the software industry resembles
"industries" traditionally protected by
copyright, in which therre are a large number
of diverse participants who accept indepen-
dent creation as a nahrral defense and risk.

rrl
I

Ihus theblindsiding problem is, in the
first insbnce, a product of the number of
players times the length of the pendency
period. The third factor, the complexity of
software - the growing number of patent-
able processes in software products - will
be discussed below.

The highly decentralized structur€ of the
softwarc industry may also be an accident of
history - of the virtual absence of patenting
until rcent years. Investment and develop-
ment practices were designed simply to
avoid unauthorized copying -the essence
of trade secret and copyright. Trade secret
and copyright were widely acceped,
although there is c€rtainly controversy
about copgight protection at higher lwels
of abstraction - the area of '1ook and feel"
and "structure, sequence, and otganiza-
tion." But with widespread patenting the
rules seem to have dranged in the middle of
the game, albeit as the effect of court
decisions and patent office policy made
seven yeaF ago.

Part of the delayed reaction is due to a
belated understanding ofthe significance of
patents. Patents are usually portrayed by
lawyers simply as another form of protec-
tion which developers are fiee to take or
leave depending on crrsts, the likely value of
the patent, and other strategic consider-
ations. [25] But that is only half the picture.
The costs of doing business under the patent
environment include the costs and risks of
avoiding infringement, which are borne by
every developer regardless of whether the
developer chooses to apply for patents. All
must adapt to a new paradigm of operation
in which defensive research precedes
creation.

If software had clearly been patentable from
the outset, there would be no surprise, no
defeated expectations. But now it appears
that the industry may have to be reshaped
to fit the patent system and that the rapid
development of software products may
have to be slowed to fit the review, process-
ing, and publication cycle of the Patent
Office. Most important, the low barrier to
entry which have characterized the software
industry will be raised significantlybythe
costs of operating under the patent systern.

Much of software development has been a
cottage industry, in which independent
genius flourished unencumbered. Visicalc,
1-2-3, WordPerfecl, and many other
microcomputer programs were initially
created by individuals and small tearns.
Software development requires no materi-
als, no special facilities, and no special tools.
To design it is to build it.

While it cannot be proven empiricalln it is
widely accepted within the software
community that there are diseconomies of
scale in software development. [25] Under a
patent regimg software development is no
longer a place for individual authors with
good ideas and the skills to transform them
into marketable software. It is instead an
industrial enterprise, in which the cost and
risks of avoiding and claiming patents are
part of the cost of doing business.

True, it will remain possible for individuals
and small companies to pursue strategic
patents themselves, which they may in turn
license to large companies. But they will

increasingly need to license from other
patent holders in order to assemble a
marketable product. Only companies with a
full complement of patents for cross-
licensing and ample financial resource to
absorb the continuing costs and risks of
pursuing and defunding against patents will
be able to innovate rationally. Investments
at the venture capital level will necessarily
be diverted from developing solid market-
oriented products to speculation in strategic
patents.

, l

L llthough cross-licensing allows
efficient, competitive exploitation of patents
in industries where there are relatively fuw
firms of roughly similar size, cross-licensing
will not work for the many thousands of
small firms and tens of thousands of
individuals in the software industry -

because these small players have little or
nothing to bring to the table. The vision of
cross-licensing as a solution to the problem
of software patents implicitly assurnes a
wholesale shakedown and restructuring of
the industry. In fact, since software publish-
ers hold so few patents, it may implythe
death of software publishing as an indepen-
dent industry and its absorption by hard-
ware manufacturers who have the arsenals
needed for meaningful "protection" in the
patent world.

Accordingly, "defensive pa.tenting," the
strateSy of acquiring patents for cross-
licensing is an option only for the largest
firms, those that can afford to acquire a
meaningful portfolio. While defunsive
patenting may of value in whatever cross-
licensing scenario emerges over the long run
(or in selling out the company to a hardware
manufacturer), it is of limited value in the
short run. First, because of the time required
to pr€par€ and pursue a patent application.
Secondly, because the particular "defensive

patents" must be needed bythe company
that holds a needed strategic patent.
Dedensive patents are completely inefftctive
against firms such as Refac International
which have no interest in producing
software themselves.

speciel edition IUNE1991

speciel edition IUNE1991

lnce a pa.tent, unlike copyright, includes
the exclusive right to control the use of the
product or prDcess, a patent holder may
pursue the users of an infringing product or
proaess independent of the manufacturer or
seller. In this respect, too, softwate publish-
ers may be victims of their own success. Not
only is their prcduct likely to be used by
laqge companies with deep pockets,but
volume licenses ane common, providing
patentees with an easy trail to infringing
users. This gives the patentee enormous
leverage over the publisher. Users will be
reluctant to deal with publishers that expose
them to lawsuits and that are unable to
indemnify them for patent infringements.
Once they understand this problem, users,
especially large corporate us€rs, will be
reluctant to acquire software from small
companies.

Small developers currently have the option
of distributing through large publishers for
which they receive a royalty of lU20% of
sales. This optio4 too, will be limited and
foreclosed. First, the publishe/s customary
royalty is likely to be reduced to rcflect the
publisher/s risk of patent infringement. But
once royalties must be paid to patent
holders, the dwelope/s margin disappears
very quickly. A "reasonable royalty'' is
commonly used as a measure of damages
for patent infringement, especially when the
patent holder is not working the patent.
Although awards of "reasonable royalties"
vary the trend is upward with recent CAFC
decisions affirming rates of 5 to\3rAVo.llll
At these rates, royalties on only one or two
patents put the developer out of business.

r-l
L \ltogether, software developers face
new costs of operation at three diffurent
categories:

At the firct level are the cocts of seardring
and analyzing prior art tro avoid patent
infringeurent A precautionary s€ardr and
report by outside patent counsel may be
expected to cost $2,000. Bear in mind that this
cost and other calculations are per process
nther than per product. Other costs include the
rick of infringing patcnts whidr cannot be
found because they are ctill in the pipeline or
becauge of the deficimcies of the classification
systenr (or the PTO'snisclasgification of
particular patents). [281

The second set of cosb are the licensc fees
that must be peid to holderc of valid patents,
including the corb of detcnnining the
neceosity md value of the liccnsc, negotiating
the liccnse, md reporting to the patent holdcr.
If the patmt holder rcfuser to license, there ere
costs of designing around the patmt if that is
possible. Otherwice, there will be the greater
coctc of recmceiving or cvm abandoning the
producL Thesc cqrtitute the direct costs
imposed by the patcnt monopoly which are
0reoretically justified by the incentive to the
patcntee and the value of the knowledge
conkibuted to the public dourain.

The third set of cogts are those incurred
only whm the developer chooseg to file for
patmts. These include the usual first-level
costs (searching for prior art) plus all the
additional €{penses of preparing filing
negotiating and maintaining a patent. In
addition to the $10n(X) to $15,000 that may be
elpected for a patent attorne/s services,
considerable time will be required from the
develope/s staff to adequately prepare and
prosecute the application. Adminishative fees
over the life of the patent will exceed $3,0fi).
Thus, the real cost can easily come to $25nfl) or
more. And this will run substantially higho if
foreign patmts are also soughl

The notoriously high costs of patent
litigation must be borne by both sides -

and so must be attributed to both the first
and third categories. fust to get through the
discovery phase of a lawsuit is likely to cost
each side $150,m0, and a full trial will cost
each $250000 on up into millions - in
direct costs, not including the staff time
absorbed in litigation. While a small patent
holder may be able to secure a law firm on a
contingency basis or sell an interest in the
patent to speculators, the defendant has no
such opions.
'r
T
l-Jitigation also involves the possibility,
and further expense, of an appeal. All
appealed patent cases now go directly to the
Court of Appeals for the Federal Circuit,
where the panels include patent lawyers
turned iudges. Whereas patents once fared
poorly in the circuit courts, the CAFC has
found patents to be both valid and infringed
in over 60% of the cases that have come
before it.

These high costs give patentees considerable
leverage over small firms, who will, as a
practical necessity, pay a license fte rather
than contest a dubious patent. The patent
holder can then move on to confront other
small firms, pointing to such license
agr€ements as acknowledgments of the
patent's validity and power. This tactic has a
snowballing €ffoct that can give the patent
holderthe momentum and resources to take
on larger companies when the time is ripe.

All these costs must be paid by someone. ln
the short run, they may come out of the
software industr5/s operating margins, but
in the long run, as the industry shakes out,
they will be bome by users. At the same
time, the shakeout will mean a loss of
diversity - in innovative firms and in the
products available to consumers.

Nature of software

The costs and risks associated with patent-
ing have grcwn geometricallyat roft*'at"
hasbecome more sophisticated and com-
plex. But, again, the impact was not felt until
rec€ntly. In the meantime, driven by a
highly competitive software market,
software developers added function after
function heedless of whether somebodyelse
might have implemented it first.

Applications software that consisted of a
couple thousand lines of code when
originally released in the early 1980s may
now contain ten thousand lines. Dan
Bricklin, author of the original spreadsheet,
Visicalc, estimates that a modern applica-
tions program may contain thousands of
processes which are patentable under
pr€sent Patent Office standards. [291
Although most of these processes ane now
part of the public domain, at this scale the
odds of infringement are probably high.

The highly integrated nature of software
makes the prospect of infringement espe'
cially disturbing. It is usually difficult to
excise an offunding process because each
proc€ss will be interconnected to the
remainder of the program package at so
many points. Several iterations of redesign
and testing may be required in the removal
of an infringing process.

PAGE 10

I

ILINE 1991spectel eilition

Software is often built on top of other
software, so thata patent problem at one
layer may preclude use of the high layers. In
this wan applications software rides on
operating system software, and many
programs are sold with run-time modules of
prcgrams which operate at a lower level of
functionalit!. A patent infringement in an
authoring system, forexample, may

ieopardize all prog&rms created with that
system.

rr1
I

I he evolution of compler; layered
software also raises problems in applying
the standard of nonobviousness. Where is
the person ofordinary skill in the art to be
found? In the elite few who design micro-
comput€r software or in the ranks of 70O000
comput€r prcgrammers? In theory, the
Patent Office should acknowledge speciali-
ties within thedevelopment prcc€ss that
differentiate cpde writers from higher-level
desigrers. But, as noted, the Patent Office
does not even recognize computer science as
a qualifying degree, so it seems unlikely that
it will recognize finer degrees of specializa-
tion.

A related problem is the breadth of the
claims allowed by the Patent Office for
software processes at the user-interface
level, often at a level of abstraction that is
shocking to the uninitiated. [30] Even
though the disclosure is in terms of a flow
chart rather than code (whidt enables the
applicant to maintain trade secret protection
at the code level), there is often great
disparity between the particular implemen-
tation disclosed and the broadest claims in
the patent. All that need be disclosed is the
'test mode contemplated by the inventor of
carrying out his invention," [3U which may
be merely one of many.

ome of these patents appear to preemPt
automation of common functions such as
footnoting and redlining. [32] Others appear
to pr€empt obvious procedures for entering
data, [33] providing on-line help [34] or
other fundamental user interface elements.
For years software developers have been
routinely implementing software analogs or
simulations of common office functions,
writing and bookkeeping procedures,
learning strategies, and other human
activities. Now the Patent Office is proceed-
ing as if the first to computerize any such
function merits a l7-year monopoly over
any software implementations of the
function.

In part, this is an issue of what is obvious to
whom. But it also reflects the sweeping
aside of judicial doctrines barring Patent-
ability for "methods of doingbusiness" and
"mental steps." [35] For example, a patent
held by Merrill Lynch on its Cash Manage'
ment Account system was upheld -

precisely because it was implemented on a
computer rather than by hand. [35] In eftuct,
this 1983 decision stoqd Diamond v. Dehr
on its head, since Diamond v. Dehr
established that a computer program did
not render an otherwise patentable Process
unpatentable. These decisions have been
accepted bythe Patent Office [37] -

although the Supreme Court has yet to rule
on these matters.

l, \ is frequently noted, software
prcaesses can be implemented in hardware
as well. But the problem is not software
versus hardware - but abstract Proc€sses
which are now typically implemented in
software. This problem is not even limited
to comput€rs. For example, a patent issued
in1979 for an "interactive teaching ma-
chine" claims not only a particular machine
but also the process of showing introductory
video segments, prcsenting the viewer with

a choice of decisions, and then showing the
viewer the likely outcome of the chosen
decision. [38] Although the patent discloses
a clumsy-looking combined videotape deck

and television, the broad process claim
covers a basic mode of user interaction
common in interactive videodisc design.

This example alsoi[,rstrates the great
difficulty of locating many "software

patents."

When such broad claims are allowed, the
traditional quid pro quo - the grant of a
limited patent monopoly for revealing what
otherwise might be kept as a trade s€cret -

is lacking. The process claimed is self-
eviden! it cannot possibly be concealed.
Furthermore, what is claimed often appears
to be functionality rather than a Process -

the two can be difficult to distinguish in the
user interface area. [39] Although the
particular implementation may not be self-
evident, implementation may be achieved in
many different ways with know-how and
hard work. Thus, the particular implementa-
tion disclosed in the patent does not
necessarily add anything of significance to
public knowledge.

Pragmatism and poliry

The traditional quid pro quo has plainly
failed in practice. No one in the industry
looks to patents to learn stateof-theart
programming and design. Even now, what
comes through the patent system is almost
by definition not state-of-the.art because it is
already nearly thr€e years old. (Had

software been patentd from the start, this
might be different: There might now be only
one word processor, one spreadsheet, one
database manager, all with less functionality
than those presently on the market -but all
stateof-the-art by definition.)

Nor is there evidence that the fundamental
quid pro quo - the incentives provided by
the seventeen-year patent monopoly -

applies. As the hesident's Commission on
the Patent System reported in 1965:

It is notd tlmt tle ctation of Vogramshas
unilergotu sttbstantial and sti$ac,nry growth
in tlp fustru $ patcnt potrtion and tlut
apytight Vobdion for pogrons is ge*ntly
auilabb.

After 23 years of dramatic growth and
worldwide acceptanc€ of copyright, these
words hold all the more true today.

PAGE 1T speciel eilition Ir.rNE 1991

en if the naturc of the software
development could not be differentiated
from other industrial development, this
situation is historically unique. The patent
system has taken effect in many industries
which previously had no intellectual
prcperty protection (other than trade secret),
but there is no other case where the patent
system has been imposed on an industry
already protected by copyright. The
industry is healthy, competitive, and
prolific. It is hard to imagine that the full
press of a patmt regime could propel it
faster. Obviously, the software industry is
not broke - but, nonetheless, it is slowly
being fixed."

Indeed, from a patent perspective, there
appears to be overinvestment and disor-
derly development in the industry. This
perspective sees wasted resoutres under a
copyright-only regime because of the
uninhibited duplication of effort.

The patent system's answer to this chaos is a
technocratic vision that would rationalize
prtcgr€ss in the industry by reducing the
number of players and creating a massive
database of patents that nepr€sents the
accumulated knowledge of the industry at
any one time. The pace of development
would be slowed to fit the cycles of the
Patent s)tstem and to reduce waste. In the
long run, a few healthy giants would
compete on a global scale, bidding for the
ideas and loyalty of inventive individuals,
and developing the technology with the
knowledge and wisdom that comes from
vertical integration and aggrregation of
resounces.

'r
I he problems with this vision are first

the problems inherent in the patent systerns
- those that have been discussed and the
fact that patent holders may act in their own
self-interest to impede progress. Experience
in the early years of the auto industry, the
aircraft industry, and the radio industry all
demonstrate the potential of pa.tents for
blocking progress. These problems are
acceped as the price of providing incentive,
but here no incentive is needed. Moreover,
these problems are exacerbated by special
characteristics of software, software
development, and the present software
industry- whether these are inherent
characteristics or a consequence of the long
absence of patenting.

But there is a deeper problem in the
technocratic vision and the likely consolida-
tion of the industry, which was not evident
when computerc were known only for ,data

processing." As the computer becomes
ubiquitous and software grows more
versatile and sophisticated, the funiversal
machine" becnmes ever more universal,
ever more adept in its mediation of human
experience. Increasingly, software is
designed to render the technology transpar-
ent, to satisfy the specific human needs and
goals - which are not concerned with using
the computer, but with the shaping,
expressiory and delivery of information.
New 'tontent- driven" software shows how
the computer program is becoming a
multimedia vehicle for human expression
and communication.

The collision between copynght and patent
principles at the user interface level has
received considerable attention in recent
years - although usually in defining the
limits of copyright in ,1ook and feel,, and
"structut€, secluence, and organization.,, But
whatever the fit of the particular software
fuature into copyright or patent, what is
increasingly at stake is the generration and
flow of information to and from human
beings. At the atomic level, information may
not be patentable (it may not even be
protectable under copyright), but it rides on
processes that are now susceptible to
patenting - just as higher level software
prccesses ride on lower level pnocesses.

T
T

Information per se is traditionally the
substance and territory of copyright -
which, in the interests of maintaining free
commerce in ideas and maximizing freedom
of speec\ forbids only direct appropriation
of pa*icular expression. Patent, by aontrast,
is an all-pervading property right, which is
measured by the full scope of the claimed
idea rather than the invento/s particular
implementation (the expression). [40]
The intelligent ordering of information is at
the very heart of grammar, rhetoric, and
graphic design. Should information which is
interactive nather than linear be subirt to
the pervasive restraints ofpatent? Should
human expression which is assenrbled or
assimilated with the aid of a computer be
restrained by patents? If the computer is
seen as extension of the human mind rather
than vice versa, it is difficult to answer yes.

PAGE 12

I
I

ItrNE1991speciel eilition

Notes:

I1l450 U.S.17s
[2I Gottrhelk v. Benaon, tl(D U.S.63 (ttJ9721i

Parker v. Flook, 437 U.S. 584 (197E).

l3l Theee figurer probably vaetly undereeti-
mate the numberbecause of the limitations
of the EDS methodology end PTOe
clecsification oyetem. For exemple, the
footnotlng patente cited in note [9] below
are not included.

The other known study, by fohn T. Soma
and B. F. Smith ("Software Trends: Who'g
Getting How Many of What? 1978 to 1987i

foumal of the Patent and Trademark Office
Society, VoL 71, No.5, May 1989, pp. 419-
rt32), ic even more limited. It focucee rolely
on patenta originally classified or cro68-
referenced to cubclase 3(X) ("Programming

Methode or Procedures') of Clase 364. It
thercforc chowa only 262 'goftwale

patentr' iceued during the ten-year period
from the beginning of 1978 through the end
of 1987.

[4] See Midrael C. Gemignani' "Legal

Prctection for Compuhr Software: The
View from'79,'Rutgers loumal of Com-
puters, Technology, and the Law, Vol. 7, p.
269-3X2,3/J�7tt.

[5] Electronic Data Syetema, note [3] above,
figuree for 1980 through April" 1989.

[6] Reliance on copyright protection does
not erclude the possibility of patenting
aspects of eoftware which cannot be
protected by copyright. tlowever, the
patenting proctss appeared costly and
uncertain. $oftware publishers aleo
ettempted to use trade Eecret Protection, but
in a mage market they had difficulty
establishing the contrachral relationship
rcquired by trade secret. See David A. Rice,
'Trade Secret Clauses in Shrink-Wrap
Licenses,' The Computer Lawyer, Vol. 2,
No. 2, Febntary 1985' pp. 17 41,

[7] William M. Bulkeley, "Will Software
Patents Cramp Creativity?" Wall Street

foumel March la, 1989, p. B1.

[8] Lawrence M. Fisher, oSoftware Industry
Ia in an Uproar Over a Rueh of Patents,"
New York Timee, May 72,1989'2. Al.

I9l Petent Noc.4,648'067 and 4a68'071'
icrued Merch 9,1%7.

[10] Patent No.4FOZ182, issued Eeb.21'
1989.

I11l Perhaps the last article of significance
is Donald Chisum'e, "The Patentability of
Algorithms,' University of Pitteburgh Law
Review, Vol.47 No. 4, pp. 959-1022'i^
which Chisum attacks the Supreme Court'e
distinction between mathematical and
computer algorithms as untenable and
argues that Benson and Flook were
wrongly decided.

[12] Eg., fohn P. Sumner, "The Versatility
of Software Patent Protection: From
Subroutineo to Look and Feel," The
Computer Lawyer, Vol.3, No. 6 $une 1986),
p. 1; Tnvis Gordon White and Ridrard T.
Redano, oPatent Opportunities for Soft-
ware-Related Subiect Matter," The Com-
puter Lawyer, VoL 4, No.7 (fuly 1987);Iohn
R. Lastova and Gary M. Hoffman,'Patents:
Underutilized Leverage for Protecting and
Licensing Software," The Computer
Lawyer, Vol. 6, No.5 (May 1989).

I13l Vince C-anzoneri, "Softwarc Enters the
Age of Patent Prctection ' ComPuter
Update luly/August 1988, p.32; "Software

Patents:'A Horrible Mistake'," Sof tletter,
September 1, 1989; Rachel Parker, "RefaCe

Unworthy Patent May Rally the Rest of the
Industry,' Infoworld, August 7, 1989'p.4!2i
Steve Gibeon, oAttomeye' Glee Over Patent
Squabblee Breeds Pessimismr' Infoworld,
October 9, 1989, p. 26. See also the articles
cited in notes 7. and 8. above.

11.4lE.g., David Bender, letter to the editor,
New York Times, fune 4 1989.

[15] The presumption of patent validity can
now be overcome only by clear and
convincing evidence. Lindemann
Maschinenfabrik GmbH v. American Hoist
& Denrick Co.,730 F2d 1452 (CAFC 1984).

[16] Robert L. flarmon, Patents and the
Federal Circuit (Washingtory DC: Bureau of
National Affairs, 1988), p. vii.

[17] President's Commission on the Patent
System, "To Promote the Progress of Useful
Arts,o 1966,p.73.

h8l -Computer processes arc not classified
within USPTOo patent classification
syotem in any readily identifiable eet of
classee and subclasses. o Letter from Jeffrey
Sarnuels, Acting Commissioner of Patents
and Trademarks to Congrcssman Robert W.

Kaetenmeier, November 1, 198!1, p.2. The
letter goee on to cite figurce frcm the Soma
and Smith ahrdy (nob [3] ebove) but
acknowledgerr'lfl€ would have no way of
knowing how accrrntely tlreae numberc
reflect the total number of patente having
claims dnwn to computer processes.-

Il9llbitl.,p.5.

[20] Calculated as the average forthe 54
software patente iasued in April 198!1, ae
identified by Elec{ronic Data Syetemr, note
[3] above.

l21l In the case of the Pardo patent (No,

4,3982491for onatural order recalcr" the
application was filed in 1970 but not
granted until 1983! The current aseignee,
Refac Intemational, hac filed an infringe-
ment action againct six maior epreadsheet
publishere.

221 George H. Gates III, -Trade Secrct
Software: Ie It PriorArt?," The Computer
Lawyer, Vol.6, No.8 (August 1989).

[23] See Vault v. Quaid,6SS F.Supp.750,
E.D. LA. (1987), affirmed,847 F2d 255
(1988), in which ihe District Court eum-
marily characterized the chrink-wrap
license in queetion ae an unenforceable
contrect of adheeion. The Court found
copying for the purpose of reverse engi-
neering to be sanctioned by Section 117 of
the Copyright Act. See also, Steven W.
Lundberg and John P. Sumner,'Patent
Preemption of Shrink-Wrap Prohibitions
on Reverse Engineering," The Computer
Lawyer, Vol.4, No.4 (April 1987).

I24l A partial solution to the long pendency
period would be to publish th€ Patent
application after 18 months, as is done in
other countries.

l25l E.g.,'?atent Protection For Computer
Software: The New Safeguard," title of
seminar sponsored by Prentice Hall Law
& Business, Washington, DC, September
13-14 1989. Some would argue that even
the word "protection" obscures the global
effects of the patent system on all players,
whether or not they choose to Patent.
[25] Dan Bricklin, MIT Communications
Forum: osoftware Patents: A Horible
Mistake," March 23, 7989.

PAGE 13 speciel edition

I27lGary M. Hoffurary 'Computer Soft-
ware Patents Scope of Protection - in
Midrael S. Keplingerand Ronald S. Laurie,
ede., Patett Protectiott for Cornputel
Soltanate : The Nezl Safegucrd (Englewood
Cliffe, Nf: Prentice HaIl Law & Business,
1989l,pp.l2S9.

l28l Becauae of the dubiouc validity of
software patents, developere may also wish
to locate and document prior art indepen-
dent of the patent record. As indicated
earlier, in the absenc€ of evidence in the
form of a printed publication, this ie likely
to be an expensive undertaking. ffowever,
it ie a way of buying come certaingr.
I29l The Patent Office hac declined to enter
into any such estimate. See letter from
Acting Commissioner leffrey Samuels
ancwering Congressman Kastenmeier,
November 1, 1989,p.4 (answer to euestion
4).

[30] Eg., Claim 1. from Patent No.4,674pN,
"Merging of Docrrmento," issued June le
l9a7:

1. A method for merging a portion of one
docrrment into another document, eaid
method comprising:

(a) including a reference in said another
document to said portion; and
(b) caueing eaid portion to be merged
wilh aaid another docrrment and
dieplayed in merged form.

l31l35 U.S.C. Section lljl.

I32l Sce notes [9] and hOl above.

[33f No.4Fa525Q iesued February 24,t987,
'Data Entry Screen.o

l34l No. 4$8,06i2"iesued March g,1;g8l7,
"Method forProviding an On Line Help
F.cility for Interactive Infonnation ffan-
dling Sycteme.-

[35] In re Muegrave,4gl F.2d 8S2 (CCPA
1970) (mental eteps).

[36] -The product of the claims of the,44J2
patent [No.4346,44121 effechratec a highly
useful businese method and would be
unpatentable if done by hand3 Paine,
Webber v. Merrill Lyndr,564 F.Supp. l3SB,
1369 (Del.198il).

13il Gerald Goldberg, .?atent and Trade-
mark Office Report on Patentable Subiecf
Matten Mathematicel Algorithms and
Computer Programsro U.S. Petent end
Trademark Office, September 1989.
[38] Patent No.4170.332. Claim 11 reado:
11. A method of openting audiovisual
teaching equipment including a stored
motion video program having an introduc-
tory life-like 6aene c{egment leading to
identified choices and plural motion video
life-like soene segments showing the likely
rcsult of cuch choicee, comprising:
pr,oiecting said introducory life-like
segment and identified choices;
terminating proiecting of said motion video
prcgram automatically in response to the
end of said introductory segment and
identified choices;

selecting one of said identified choices by
manual actuation; and
automatically projecting in response to said
selecting step only one of said plural
motion video life-like segments displaying
the likely r,esult of eaid selecting etep.
[39] Mere functions are traditionally not
patentabte. Denning Wire and Fence Co. v.
American Steel & Wire Co., 169 F 793 (CAB
Iowa, 1909).

Section 112 ofthe 1952 Patent Act provides
for claims in the form of "means plus
function," and it was once considered
preferable to claim software patents as an
apparatus (a hardware circuit or a general
purpose computer) with specific functional-
ity rather than as a process. However, the
courts and the Patent Office have tried to
discount such differences in form.

ltlol This generalization is subiect to the
qualification that under the doctrine of
equivalents, courts may oocasionally look
beyond the literal claims to -equivalents.,

This may involve looking to the .invention

as a whole" including the implementation.
See Ronald S. Laurie and foqge Contreras,
'Application of the Doc{rine of Equivalents
to Software-Based Patents,o in Michael S.
Keplinger and Ronald S. Laurie, eds.,
Patent Ptotection fot Computer Softutare:
The Neu Saleguatul (Englewood Cliffs, Nf,
1989).

PAGE 14 cpecTel cilltton IUNE 1991

Appendix B
Against S oftut ate P atents
by

The League forProgramming Freedom

The ddns ol tlu Leegu fot Pmgrummlng

Fncilotn ls I Kctdtl[Sqr,alrr | 7t8, P.O. Bu

9171, Cttnffidgc, trlr,crrrJtrlcrlt6 02139 ; ib

telcphonclrr;ibetlc (677) 2434l//|�.�.1, end ib

clecttonlc alull tiBrcss is
lcegfrgcVat.mitttlt.

Software patmts thraten to ilanstate
Amqica's cottputer inilustry. N ady
ganteil *ftutarerytatts arcbeing useil to

attac*a ntrynia sudt as thelotnsDoeloV

neflt C-otporatbn anil Microsftfor selling

prcgrms tlat tlvy h*oe indqendntlY

deoelopen. Soon neut cnrrynia truY be

funeil frottt aiering the sof twate arcna

bttttse the cost of licensingthe ilozens of

patmts twa*ry fur a rujor Prcgtam will

ru*e such aprcjet econotrically itttpossible.

As yogrammets, u)e belierte tlut if the

United Stata P atent anil Tradanark O ffice
continua to grant soltware pa:tents, we wiII

saon be effatioely forbitldat ftom uiting
prcgrams tlut areusqul.

The patent system and
comPuter Programs

Copyright was traditionally understood to

cover the particular details of a paticular
prcgnm; it did notcover the ftatures of the

prctram, or the genenl methods used. And

trade secrecy, by definition, could not

prohibit any dwelopnmt work by sorteone
who did not know the secret.

\-zzn this basis, software development
was extremely profitable, and received

considerable investment, without prohibit-

ing the development of new prognms by

otherrs.

But this scheme of things is no more.

Software patents became legal in the U.S. in

1981, and now enough time has elapeed for

nlunerous patents to be aPProved.

Many programmers ane unaware of the

change and do not appreciate the magnitude

of its effects. Today the lawsuits are iust
beginning.

Absurd patents

The framers of the Constitution established

the patent system so that inventors would

have an incentive to share their inventions

with the general public. In exchange for

divulging an invention, the Patent grants the

invmtor a l7-year monopoly on the use of

the invention. The patent holder can license

others to use the invention but may also

refuse to do so. Indepmdent reinvention of

the same technique by others does not let

them use it.

Patents do not cover specific Programs:
instead, they cover particular techniques

that are used to build Programs, or particu-

lar fuatures that programs offer. Once a

technique or ftature is patented, it may not

be used in another program without the

permission of the patent-holder+ven if it

is implemented in a different way. Since a

progxam tyPically uses many techniques

and provide many features, it can infringe

many Patents at once.

Until rccently, Patents were simply not used

in the field of software. Software developers

would copyright individual Programs, or

make them trade secrets.

The Patent Office and the courts have had a

very difficult time with computer software.
The Patent Office refuses to hire C-omputer

Science graduates as examiners and in any
case does not offer competitive salaries for

the field. Patent examinets ane often ill-

prepared to evaluate software patent

applications to determine if they represent

techniques which have been previously
used or are obvious-both of which are

grounds for rejection.

Their task is made more difficult because

many commonly-used software techniques

do not appear in the scientific literarure of

comput€r science. Some seemed too obvious

to publish, others seemed insufficiently
general. Complicated assemblages of

techniques have often been kePt secret.

And what is obvious to a programmer is

frequently not obvious to a Patent examiner,

many of whom view innovations in com-

puter science the same way as they see

innovations in chemistry or biology.

Computer rientists know rnany techniques

that can be generalized to widely varying

circumstances. Based on Patents that have

PAGE 15 speciel edition

been awarded, the Patent Office seems to
believe that each separate use of a technique
is a candidate for a pa.tent.

For example, Apple has been sued because
the Hypercard program violates patent
number 4,736,3M, a patent that describes
nestd rrcllable objects: windows that can
scrcll, containing tables that can individu-
ally scroll, containing items that can
individually scroll. These three types of
xrolling were all in use at the time that
patent numbet 4,736,{8 was applied for,
but combining them is now illegal.

ny well-known and widely used
techniques have been patented. Unfortu-
nately, the granting of a patent by the Patent
Office canies a presumption in law that the
patent is valid. Patents for well-known
techniques that were in use for more than 10
years before the patent was granted have
been upheld by federal courts.

For example, the technique of using
exclusive{r to write a cursor onto a screen
is well known and has been used for
decades. (Its advantage is that another
identical exclusiveor operation can be used
to erase the cursoi without damaging the

recalculation in a fixed order. This technique
is very similar to the old artificial intelli-
gence techniques of antecedent reasoning
and constraint propagation, but we cannot
rely on the courts to overturn the patent on
these grounds.

Nothing protets programmers from
accidentally using a technique that is
patented-and then being sued for it.
Taking an existing program and making it
run faster may also make it violate half a
dozen patents that have been granted, or are
about to be granted.

Even if the Patent Office learns to under-
stand software better, the mistakes it is
making now will follow us into the next
century, unless Congress or the Supreme
Court intervenes to declare them void.

However, this is not the extent of the
problem. Computer programming is
fundamentally different from the other
fields that the patent system previously
covered. As a result, even if the patent
system were fixed to operate'hs intended"
for software, it would still largely wipe out
the industry it is ostensibly designed to
encourage.

, l

L \rd software is also much cheaper to
manufacture: copies can be made easily on
an ordinary workstation costing under ten
thousand dollars. To produce a hardware
system often requires a factory costing tens
of millions of dollars.

Why is this? A hardware system has to be
designed using real components. They have
varyrng costs; they have limits of opention;
they may be sensitive to temperaturg
vibration or humidity; they maygenerate
noise; they drain power; they may fail either
momentarily or permanently. They must be
physically inserted in their place in the
machinery, and it must be possible to gain
access to them to test or replace them.

Moreover, each of the components in a
hardware design is likely to affuct the
behavior of many others. Therefore, is it
very hard to figure out what a hardware
design will do: mathematical modeling may
prove wrong when the design is built.

By contrast, a computer program is built out
of ideal mathematical objects whose
behavior is defined, not merely modeled
approximately, by abstract rules. When you
write an if-statement after a while-state-
ment, you don't have to worry that the if-
statement will draw power from the while-
statement and thereby distort its output, nor
that it will overstt€ss the while-statement
and make it fail.

Despite the fact that they are built from
simple parts, computer programs are
incredibly complex. The program with fifty
thousand lines probably has a hundred
thousand parts, making it as complex as an
automobile, though far easier to design.

While programs cost substantially less to
write, market and sell than automobiles, the
cost of dealing with the patent system is not
less. The same number of components will,
in general, be likely to involve the same
number of possibly-patented techniques.

Software systems are much easier to design
than hardware systems of the same number
of components. For example, a program of a
hundred thousand components might be
fifty thousand lines long and could be
written by two good programmers in a year.
The equipment needed for this costs less
than ten thousand dollars; the only other
cost would be the programmers' own living
expenses while doing the job. The total
investment would be less than a hundred
thousand dollars. If done commercially in a
large company, it might cost twice that. By
contrast, an automobile typically contains
under a hundred thousand components; it
requires a large team and costs tens of
millions of dollars to design.

other data on the screen.) This technique €n I
be used in just a tuw lines of program, and a r'ltrhy SOftware iS differgnt
clever high school student might well
reinvent it. But this, as well as other
important graphicr techniques, is covered
by patent number 4192590, which has been
upheld twice in court.

English patents covering customary
graphics techniques, including airbrushing,
stenciling, and combination of two images
under contrcl of a third one, were recently
upheld in court, despite the testimony of the
pioneers of the field that they had devel-
oped these techniques years before. (Ihe
corresponding United States patents,
induding 4,633,416 and 4,Q2,2f!6, have not
yet been tested in court, but they probably
willbesoon.)

Currently all companies who have devel-
oped spreadsheet programs are being sued
because of a patent 4,398,249, covering
"natural order r€calc"-the recalculation of
all the spreadsheet entries that are affected
by the changes the user makes, rather than

PAGE 16 special edition IUNE1991

What is "obviotts"?

The pat€lrt system will not grant or uphold
patents that are iudged to be "obvious."

Howwer, the standard of obviousness that

the patent system has develoPed in other

fields is inappropriate to the software field.

Patent examinets ane accustomed to

considering anen small, incremental dranges

as deserving new Patents. For example, the

famous Polntoid os. Kodak case tumed on
diffuience in the number and order of

layers of dremicals in a filmiifferences
between the technique Kodak was using

and those described by previous, expired
patents. The court ruled that these differ-

ence wereunobvious,

Computer scientists solve problems far
faster than people in other disciplines,
because the medium of programming is
more tractable. So th€y are trained to

generalize solution principles from one
problem to another. One such generalization
is that a procedure can be repea.ted within
itself, a prcc€ss known as nesting. Nesting
in software is obvious to comPuter Pro-
grammers-$ut the Patent Office did not

think that it was obvious when it Sranted
the patent on nested scrolling, for which

Apple was sued.

Cases such as this cannot be considered
errors. The patent system is functioning in

software just as it does in other field*but
with software, the result is outrageous.

Patenting what is too obvious
to publish

Sometimes it is possible to Patent a tech-
nique that is not new precisely because it is

obvious-so obvious that no one saw a
point in writing about it.

For example, comPuter companies distribut-

ing the free X Window System developed by

MIT are now being threatened with lawsuits

by AT&T over patent number 4555,775,
covering the use of 'tacking store". This

technique is used when there are overlap

ping windows; the contents of a window
that is partly hidden are saved in off-screen
memory so they canbe put back quicklyon
the screen if the obscuring window disap-
pears (as often happens).

In fact, the technique of backing stote was
used in an earlier MIT project, the Lisp
Machine System, before AT&T applied for
the patent. But the Lisp Machine developers
did not publish anything mentioning the
use of backing store until the proglammers'
reference manual was written some years
later. They expected that any window
system developer would have the same

idea, given that the memory of the computer
was large enough to make the idea practical.
(Earlier window systerns, such as those at
Xerot did not use backing store because the

computers in use had insufficient memory
spac: tospare any for this purpose.)

Y Y ithout a publication, the use of
backing store in the Lisp Machine System
may not cpunt as prior art to defuat the
patent. So the AT&T patent may be enforce'
able, and MIT may be forbidden to continue
using a method that MIT used before AT&T.

The result is that the dozens of companies

and hundreds of thousands of users who

accepted the software from MIT on the

understanding that it was free are now faced

with possible lawsuits (they are being
thr€atened by C-adtrak as well). The X

Windows Project was intended to develop a
window system that all developers could
use freely. Because of software patents, this
public service goal seems to have been
thwarted.

The danger of a lawsuit

Under the current Patent system, a software

developer who wishes to follow the law

must determine which Patents his program
violates and negotiate with each patent

holder a license to use that Patent. Licensing

maybe prohibitivelyexpensive, as in the

case when the patent is held by a competi-

tor. Even "reasonable" license fees for

several patents can add up to make a proiect

unfeasible. Alternatively, the dweloper may
wish to avoid using the patent altogether;
unfortunately, there rnay be no way around
it.

The worst danger of the patent system is
that a developer might find, after releasing a
product, that it infringes one or many
patents. The resulting lawsuit and legal fees
could force even a medium-size company
out ofbusiness.

Worst of all, there is no practical way for a
software developer to avoid this danger-
there is no effective way to find out what
patents a systern will infringe. There is a
way to try to find out-a pa.tent search-but
such searches are unreliable and in any case
too expensive to use for software projects.

Patent searches are
prohibitively expensive

In a system with a hundt€d thousand
components, there can easily be hundreds of
techniques that might alreadybe Patented.
Since each patent search costs thousands of
dollars, searching for all the possible points
of danger could easily cost over a million.
This is far more than the cost of writing the

Program.
But the costs don't stop there. Patent
applications are written by lawyers for
lawyers. A programmer reading a patent
may not believe that his Program violates
the patent, but a federal court may rule
otherwise. It is thus now necessaty to
involve patent attorneys at every phase of
program development.

Yet such involvement only reduces the risk
of being sued later-it does not eliminate
the risk. So it is necessary to have a reserve
of cash for the eventuality of a lawsuit.

When a company sFnds millions to design

a hardware system and plans to invest tens

of millions to manufucture it, an extra
million or two to pay for dealing with the
patent system might be bearable. However,

for the inexpensive programming prcfirt,
the same extra cost is prohibitive.

PAGE 17 special edition

In pa.rticular, individuals and small compa-
nies cannot afford these costs. Software
patents will put an end to software entr€pre-
ngurs.

Patent searches are unreliable

Even if companies could afford the heavy
cost of patent searches, they are not a
reliable method of avoiding the use of
patented techniques. This is because patent
searches do not reveal pending patent
applications (which are kept confidential by
the Patent Office). Since it takes several
years on the average for a patent to be
granted, this is a serious problem: a com-
pany could begin designing a large program
after a patent has been applied for, and
release the program before the patent is
approved. Only later will that company find
out whether its profits will be confixated.

For example, the implementors of the
widely-used public domain program
@trruss followed an algorithm obtained
from the irurnal,, IEEE Cottrputcr. They and
the user community were surprised to learn
later that patent number 4"558102 had been
issued to one of t'he authors of the article.
Now Unisys is demanding royalties for
using this algorithm. Although the program
is still in the public domain, using it means
risking a lawsuit. And implementing the
algorithms found in the irurnals is no longer
safe.

In addition, the Patent Office does not have
a workable scheme for classifying software
patents. Patents are most frequently
classified by the activity they are used iry
such as 'tonverting iron to steel/' but many
patents cover algorithms whose use in a
program is entircly independent of the
purpose of the program. For example, a
program to analyze human speech might
infringe the patent on a speedup in the Fast
Fourier Transform; so might a program to
perform symbolic algebra (in multiplyhg
large numbers); but the catetory to search
for such a patent would be hard to prcdict.

I
Iou might think it would be easyto keep

a list of the patented software technique, or
even simply remember them. However,
managing such a list is nearly impossible in
practice. The patent office has now granted
more than 2fi)0 software patents. In 1989
alone, 700 patents were issued. We can
expect the pace to accelerate.

When you think of inventions, you probably
call to mind rcvolutionary inventions such
as the telephone or magnetic core memory.
This is not the standard that the patent
system uses, however. What we would
consider a minor cleverness or variation or
combination of existing techniques, they
consider patentable. This leads to a profu-
sion of obscure patents.

.(\ny capable software designer will
"invent" several such improvements in the
course of a project and will say that they are
straightforward-hardly inventions at all.
However, the number of avenues for such
improvement is very largg so no single
proiect is likely to find any given one.
Therefore, the Patent Office is not likely to
classify them as obvious. As a result, IBM
has several patents (including 4,654583) on
certain fairly straightforward, albeit
compler; speedups for well-known compu-
tations performed by optimizing compilers,
such as computing the available expressions
and register coloring.

Patents are also granted on combinations of
techniques that are already well known and
in use. One example is IBM patent 4,742,450,
which covers "shared copyon-write
segments." This is a technique that allows
several programs to share the same piece of
memory that represents information in a
file; if any program writes a page in the file,
that page is replaced by a copy in all ofthe
pnograms, which continue to share that page
with each other but no longer share with the
file.

Shared segments and copy-on-write are
very old techniques; this particular combi-
nation may be new as an advertised feature,
but is hardly an invention. Nevertheless, the
Patent Office thought that it merited a
patent, which must now be taken into
account by the developer of any new
operating system.

These sorts of patents are like land mines:
your chances of running into any one of
them are small, but soon there will be
thousands of them. Even today it is hard to
keep track of them, and a rec€nt list pub-
lished by lawyers special2ing in the field
omitted some of these IBM patents. In ten
years, programmers will have no choicebut
to march on blindly and hope they are
lucky.

Patent licensing has
problems, too

Most large software companies are trying to
solve the problem of patents by getting
patents of their own. Then they hope to
cross-license with all the other companies
and be free to go on as before.

While this approach will allow companies
like Microsoft, Apple and IBM to continue
business, it will shut future companies out
of the marketplace. A future start-up, with
no patents of its own, will have no choice
but to meet whatever conditions the giants
choose to impose. And that price might be
extremely high: companies currently in the
market have an incentive to keep out future
competitors. The recent [.otus lawsuits
against Borland and the Santa Cruz Opera-
tion (although involving an extended idea of
copyright rather than patents) show how
this can work.

T1
H

I-Jven a system of industrv-wide cross-
licensing wiil not protect thelftware
industry from companie whose only
business is to buy patents and then sue
people for license fees. For example, the
New York-based REFAC Technology
Development Corporation recently bought
the rights to the "natural order recalC
patent solely so that REFAC could sue
Lotus, Microsoft and other companies
selling spread-sheet programs. Contrary to
its name, REFAC does not develop anything
excep lawsuits. It has no financial incentive
to ioin a cross-licensing compact. The
exclusive-or patent is owned by another
such litigation company, Cadtrak, which is
now suing Westem Digital.

PAGE 18 speciel editiotr JLJNE 1991

REFAC is demanding five percent of sales of
allmaprspread+heetPrograms'Isory Insoftwarerindependentfuture prognm infringes on twenty such -'.*--'

-:
patent;;d this isnot at all unlikely, given reinvention is conrmonPlace

conditions (ncessarily excluding the vast
maiority of cases) it would be beneficial to
grant software patents.

Nonetheless, the right thing to do now is to
eliminate all software patents as soon as
possible-before more damage is done. The
careful study can come afterward.

This may not be the ideal solution, but it is
close and is a great improvement. Its very
simplicity helps avoid a long delay while
people argue about details.

Clearly softwar€ patents arc not urgently
needed by anyone excep,t patent liawyers.
The pre-patent software industry had no
problem that patents solved; there was no
shortage of invention and no shortage of
investment.

If it is ever shown that software patents at€
beneficial in certain excepional cases, the
law can be changed again at that time-if it
is important enough. There is no rcason to
continue the prcs€nt catastrophic situation
until that day.

Inventions are not the
important thing

Many observers of US and fapanese
industry have noted that one of the reasons

fapanese are better at producing quality
products is that they assign greater impor-
tance to incremental improvements,
convenient features and quality rather than
to noteworthy inventions.

It is especially true in software that success
depends primarily on getting the details
right. And that is most of the work in
developing any useful software system.
Inventions are a comparatively small part of
the process.

The idea of software patents is thus an
example of the mistaken American preoccu-
pation with the big invention rather than the
desirable product. Patents will reinforce this
misdirection of American attention. Mean-
while, by presenting obstacles to competi-
tion in the important part of software
dwelopment, they will interfure with
development of quality software.

the complexity of a computer program and
the specificity of patents that have been
recentlyissued-that prcgram will never be
used.

To get a picture of the effects for yourself,
imagine if each square of pavement on the
sidewalk had its owner, and you had to
negotiate a license to step on it. Imagine
trying to walktheentire length of a block
under this system. That is what writing a
prcgram will be like if software patents are
allowed to proliferate.

Ttre firndamental question

According to the Constitution of the United
States, th€ purpose of patents is to "promote

the protress of rience and the useful arts."
Thus, the basic question at issue is whether
software patents, supposedly a method of
encouraging software progress, will truly do
so or whetherthey will instead hold
progress back

So far we have explained the ways in which
patents will make ordinary software
development difficult. But what of the
intended benefits of patents: more inven-
tion and more public dirlosure of inven-
tions? To what extent will these actually
occur in the field of software?

There will be little benefit to society from
software patents because invention in
software was already flourishingffire
software patmts, and inventions wete
normally published in purnals for everyone
to use. Invention flourished so strcngly, in
fact, that the same inventions were often
found again and again.

A patent is an absolute monopoly; anyone
who uses the patented technique can be
stopped, even if it was independently
reinvented.

The field of software is one of constant
reinvention; as some people say, prcgram-
mers throw away morre "inventions" each
week than other people develop in a year.
And the compa.rative ease of designing large
software systems makes it easy for many
people to do work in the field.

As programmers, we solve many prcblems
eadr time we develop a program. In the
past, we would publish the important
solutions in irurnals and forget the rest. All
of these solutions are likely to be reinvented
frequently as additional people tackle
similar problems and tryto do a good pb.

Today, however, many of these specialized
solutions are being patented. If you then
rediscover it in the cpurse of your work, you
are headed for a lawsuit that you cannot
anticipate.

Meanwhile, the prevalence of independent
reinvention negates the usual justification

for patents. Patents are intended to encour-
age the development of inventions and,
above all, the disclosure of inventions. If a
technique will be reinvented frequently,
there is no need to encourate more people
to invent ig since some of the developers
will choose to publish it (if it merits publica-
tion), there is no point in encouraging a
particular inventor to do so--and certainly
not at such a high price.

Could patents ever be
beneficial?

Although software patents in general are
harmful to society as a whole, we do not
claim that every single software patent is
necessarily harmful. It is possible, though
not certain, that careful study would show
that under certain specific and narrow

PAGE 19 spectal edition IUNE 1991

Softrpare patents arc legally
quetionable

One way to eliminatte
software patents

There are arcas of design which are between
hardware and software in some ways: for
example, gate arays and silicon compilers.
These will fall on one side or the other of the
line that is drawn. If the line is drawn as
prcposed here, based on the needs of the
field, there is reason to hope that thes€ will
fall on the side that is best. However, these
intetween aneas ar€ comparatively small,
and what really matters is to solve the
problem for the larger area of ordinary
software as surely and expeditiously as
possible.

Condusion

Exempting software from the scope of
patents will prwent the patent system from
turning an efficient creative activity into
something that is prohibitively expensive.
Individual practitioners will be able to
continue work in their fields without
expensive patent searches, the struggle to
find a way dear of patents, and the un-
avoidable danger of lawsuits.

If this change is not made, it is quite possible
that the sparks of creativity and individual-
ism that have driven the computer revolu-
tion will be snufftd out.

It may come as a surprise that the extension
of patent lawto software is still legally
questionable. It rests on an extreme interpre-
tation of a particular 1981 Supreme Court
decision" Diottondos, Dahr. (This informa-
tion cpmes from a paper being written by
Professor Samuelson of the Emory School of
law.)

Traditionally, the only kinds of prccesses
that could be patented were those for
transforming matter (such as, for transform-
ing iron into steeD. Many other activities
which we would consider processes were
entirely excluded from patents, including
business methods, data analysis, and
"mental steps".This was called the "subject

matter/' doctrine.

Dimmnilos, Dalrrhas been interpreted by
the Patent Office as a rerrersal of this
doctrine, but the cpurt did not explicitly
relrt it. The case concerned a process for
curing rubber-a transformation of matter.
The issue at hand was whether the use of a
comput€r protram in the process was
enough to render it unpatentablg and the
court ruled that it did not. The Patent Office
took this narrow dcision as a green light for
unlimited patenting of software techniques,
and even for the use of software to perform
specific well-known and customary activi-
ties.

Most patent lawyers have embraced the
changg saying that the new boundaries of
what can be pa.tented should be defined
over decades by a serie of expensive court
cases. Such a couree of action will certainly
be good for the patent lawyers, but it is
unlikely to be good for software dwelopers
and users.

We recpmmend that Congress pass a law
that excludes software from the domain of
patents. That is to say that, no matter what
might be patented, the patent would not
cover implementations in software; only
implementations in the form of hard-te.
destp hardware would be covered. An
advantageof this mahod is that it would
not be necessary to classify patent applica-
tions into hardware and software when
judgingthem.

People often ask how it would be possible to
define software for this purpose-where the
line would be drawn.

rr
H

I or the purpose of this legislation,
softwarc should be defined by precisely the
characteristics that make software patents
harmful:

r Software is built from ideal mathernatical
components, whose inputs are clearly
distinguished from their ouputs. Ideal
mathematical components are defined by
abstract rules so that failure of a cpmponent
is by definition impossible. The behavior of
any system built of these components is
likewise defined by the consequences of
applying the rules to its componmts.

r Software can be easily and cheaply copied.

Thus, a program which computes prime
numbers is a piece of software. A mechani-
cal devic€ designed specifically to perform
the same computation would not be
software, since the mechanical dwice might
fail if it wer€ not properlyoiled, and would
have to be constructed out of physical
obiects.

I

cpeciel alttton

This special edition is devoted to

the report of the Committee on
Algorittrms and the Law. The next

regularO P T I M Awillappear
in mid*ummer, 19D7.

IUNE1991

Books fot tmieu stror.U be
serfi to thc B o ok Feoieu, Eilit ot,
Prof.Dt.rlchimBdpnn,
Mathntatichcs htstitub ibr
llniorzsitit anKdln,
Weyutal &A{n, D-5000 Kdln'
WestGanany.

lournal contents rre cubiect
to c}ange by the publishcr.

Donald W.Hearn, Eonon
Actrtm Bachem, Assooffs Eonq
l'uausrco sy nc Mlrrnuencar,
Itocnnrnmvc Socgrv lNp
RrsucAnoN Snracns or rrs
Couxce or gI.Ic[.tEER[.re,

UNncnsrrv o Fl.mo*
lsaDrake,Dscnm.

E P T I M A
lf,ATHEM/\TrcAL PNOGIAMMII{G TOCIETY

S0SWeilHall
Colbge of Ettginrrring
llnioetrity of Frotid4
G llirl,aoilb, Floriirg 32611-2A83 USA

FIRST CI.ASS MAIL

